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Abstract

This paper presents an alternate method of calculating the cell size for orthogonal-

ity control in the solution of Poisson's three-dimensional space equations, The method

provides the capability to enforce a better initial guess for the grid distribution re-

quired for boundary layer resolution. This grid point distribution is accomplished by

enforcing grid spacing from a grid block boundary where orthogonality is required.

The actual grid spacing or cell size for that boundary is determined by the two or

four adjacent boundaries in the grid block definition, which are two dimensional grids.

These two dimensional grids are in turn defined by the user using insight into the flow

field and boundary layer characteristics. The adjoining boundaries are extended using

a multi-functional blending scheme, with user control of the blending and interpolating

functions to be used. This grid generation procedure results in an enhanced Computa-

tional Fluid Dynamics calculation by allowing a quicker resolution of the configuration's

boundary layer and flow field and by limiting the number of grid re-adaptions. The

cell size specification calculation has been applied to a variety of configurations ranging

from axisymmetric to complex three-dimensional configurations. Representative grids

will be shown for the Space Shuttle and the Langley Lifting Body (HL-20).

Introduction

Design and development of aerodynamic configurations in industry is primarily being done

with inviscid solvers as well as intricate panel methods. [1, 2, 3] These simplified solvers

are being employed as methods of homing in on optimum designs for a variety of contracts
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and developmental programs. Yet most contractors find it necessary to further optimize the

designs through detailed studies and gathering of experimental data [1].

Although the design processes employed by industry optimize configurations based on

designed mission profiles, the capabilities for acquiring experimental data at these design

points are limited. As a result, Computational Fluid Dynamics (CFD) is being used as an
alternative source of detailed evaluation data. Most users in the CFD community would

prefer to use CFD codes modeling viscous effects in the design process because they model

the non-linear effects of the flow characteristics [4]. By utilizing this type of CFD code, a

more competitive environment is established for design optimization, resulting in better

configuration designs. However, current CFD codes can not be used as design tools, simply

because they are still too time consuming to be used in parametric studies.

Current research and development in the CFD arena has been focusing on accurate sim-

ulation of viscous flows [5, 6, 7]. The area of most development has been in the generation of

Navier-Stokes solvers, with emphasis on the algorithms employed as opposed to the resolu-

tion of the grid for numerical accuracy. As progress has been made in the generation of these

viscous flow solvers, more complicated configurations are being envisioned and designed, es-

pecially in the area of high speed aerodynamics. Some typical complex configurations include

the National Aerospace Plane [8] to the advanced fighter designs [9]. The increased complex-

ity of configurations has led to more complex solution algorithms in order to gain numerical

accuracy.
There are several different methods for obtaining numerical accuracy based on the grid.

One way is to re-adapt the grid being used based on flow characteristics. This type of pro-

cedure will allow for most efficient use of the available grid points. With the emergence of

the SAGE code [10] to the shock alignment procedure that is used in the Langley Aerother-

modynamic Upwind Relaxation Algorithm (LAURA) code [11], numerical accuracy via grid

re-adaption is being made possible. By obtaining numerical accuracy in this fashion, the

number of grid points necessary to solve the flow field calculations can be reduced with a

corresponding rapid resolution of the flow characteristics. Furthermore, these re-adaption

codes assume a solution has been generated and grid adaptation is done to improve numerical

accuracy and convergence.

However, the original grids used by the solvers to obtain an initial solution for grid

adaptation have grids that are coarse near the surface, or wall. The coarse spacing typically
results from the methods used to determine the cell sizes necessary to calculate the forcing

functions of the elliptic solvers. The most commonly used method for determining cell sizes

for orthogonality control is Trans Finite Interpolation (TFI). TFI is based on maintaining

the overall grid distribution as defined by the boundaries of the grid block flow domain or

surface edges. Yet, as a result of the dependency on the opposing flow domain boundaries,

the grid lines that result may have a highly skewed apperance (figure 1). This skewness of

grid lines from the surface will cause the overall cell size to be much larger as opposed to

the grid line being orthogonal to the surface. This leads to excessive grid re-adaptations to

resolve the boundary layer.

In order to generate a quality grid for a Navier-Stokes CFD calculation, the grid distri-

bution must allow for the accurate resolution of the viscous forces at a solid boundary. The

grid spacing is controlled in elliptic solvers by the specification of the first cell sizes off of the

configuration's surface and the decay rate of the forcing functions for orthogonality; this pa-
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Figure 1: Grid line skewness produced by TFI.
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per will only consider the latter. Thus a better guess as to the surface cell sizes necessary to

model the boundary layer flow characteristics, with the use of local grid densities is needed.

The areas that require high grid densities and small cell sizes can be identified using

several methods. One might be able to use current databases of experimental data for

configurations having similar geometric characteristics and evaluated under similar flight

conditions. Another might be to use linear panel theory. Nonetheless, the general areas of

concern for proper boundary layer modeling can be determined and by having proper surface

and near-surface grid densities, accuracy and solution convergence rates can be maximized.

The purpose of this paper is to present an alternate method that links the problem

of a better initial grid to the solving of Poisson's three dimensional space equations. The

method allows the user to use insight to determine the "best" guess of the local cell size

for different computational regions and define the cell sizes on the surface domain with a

multi-functional blending scheme. This blending is done by smearing the Local ARc length

Cell Sizes (LARCS) based on the configuration's surface edges, into two distinct planes that

represent the first interior points from the configuration's surface. Then a continuous hyper-

bolic function is used to combine these interior planes to generate a single plane representing

the cell sizes off the configuration's surface. The blending will result in a smooth cell size

transition between all defining surface edges and will remove the dependency on the

opposing grid block boundary.

Method

The overall goal of this method is to take the best guess of the cell size to be used in given

areas of a configuration for boundary layer resolution and propagate the cell sizes onto the

configuration surface. The resulting blend will be smooth from computational region to

computational region. This process begins by determining the local cell sizes of the grid

to use on the defining boundaries of the grid blocking structure (figure 2).

The local wall cell size As,,,, given in equation 1

p_a_

is based on the cell Reynold's Number at the surface. By setting the local cell Reynold's

number to a value of 2.0 or less [11], the proper cell size can be determined (figure 3).

This Reynold's number and the resulting cell size will enable a CFD code to capture the

viscous forces in the boundary layer [15, 16]. By accomplishing this capture early in the CFD

calculation of the viscous flow field, enhanced convergence of the boundary layer will occur

resulting in a reduced number of successive grid re-adaptions. Hence, the flow resolution

should be expedited.

The other parameters required to calculate the cell sizes include the local temperature

(T_) and density (p_). These parameters can be determined by any number of methods.

Some of these include comparing experimental or computational results of a similar config-

uration, using some of the relationships for ideal or perfect gases [12] or a simple impact

theory program such as APAS [3]. In any case the overall goal is to determine a local density,

and temperature for a given region on the surface of the configuration.
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Figure 2: Block structure to be utilized in defining flow field domain.

Lee side

Wind side

Figure 3: Cell size on a surface based on an initial guess with large cell sizes on the leeside

decreasing towards the windside.
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The temperature is used to calculate two other needed parameters. The first is the local

speed of sound (equation 2)

=  /TRT, (2)

used in the cell Reynold's number equation. The second parameter that is derived from

temperature is the viscosity. It can be determined by using Sutherland's Law [13], equation

3 or reference [14] for those cases where temperatures are above 2000deg K.

#s = 1.4584 × 10 -s (T°K)3/_ (3)
(T°ld) + 110.33

Thus the initial cell sizing parameter calculation is dependent on the user's discretion,

but the resulting cell size should represent the type of flow characteristics expected. For

example, if a cone was being evaluated at an angle of attack of 40 degrees, one would expect

cell sizes on the leeward side to be large compared to the windward side. (figure 3.)

After determining the cell sizes to be utilized in the different regions of the block bound-

aries, a grid generator such as GRIDGEN [17], PATRAN[18], etc., is used to define the

two-dimensional grids for each face of the grid block (figure 4). Then three-dimensional

Poisson solvers [19] are employed to create the volume grid for computational analysis. In

order to solve these equations to obtain orthogonality on the block boundary surfaces of

choice, the cell size, computed by equation 4,

As = _Ax 2 + Ay 2 + £xz 2 (4)

has to be known. It is this cell size that LARCS is used to determine.

The determination of the cell sizes emanating from any given point on a configuration's

surface by LARCS begins with the functionalization of the cell sizes of the adjacent bound-

aries with respect to their parametric coordinates. For example, if cell sizes for the surface

of the configuration in figure 5 are being determined, the defining boundaries are the [eeside

and the windward side symmetry planes (faces 3 and 4 respectively), the pole boundary (face

1) and the exhaust plane (face 2). Next the cell size as a function of parametric coordinate

is determined for each edge (figure 6.) using the standard arc-length equation 4.

From the functionalization, two distinct planes representing cell sizes off of the config-

uration's surface are created. The first plane is generated by blending from the cell size

functionalization on face 1 to that of face 2, in the _ direction. Similarily, the second plane is

a blend between face 3 and face 4 in the q direction. These planes can be generated utilizing

linear or parabolic blending. For the linear blending of faces 1 and 2 (figure 5), the basic

blending coefficient calculated via equation 5

a_ - (5)
_,_._. - 1

with the condition in equation 6

a¢1_2 + a_2_1 = 1.0

forms the blending coefficient of face 1 to face 2, equation 7

a_l-2 - _,_ - 1

(6)
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Figure 4: Two dimensional grid definitions on flow domain block boundaries.
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Figure 5: Simple cone for cell sizing calculation.
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configuration's surface.
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and the blending coefficient of face 2 to 1, equation 8.

= 1 - (s)
_m.x- 1

Using the linear blending, equation 9

As_., = a_l_ _As_..,. + a__, As_.,._ (9)

substituting in equations 7 & 8, and combining like terms, equation 10 is used to blend from

opposing faces 1 and 2.

(_max --_) (Asem," _ As_._..)+ As_._o. (10)- \&o--: i

Likewise, linear blending of opposing faces 3 and 4 can be written as in equation 11 (figure

7).

Ase"3-'-(r/m=*-q)(Asn='"-Aan="')+Aa""_*y,,,=.1 (11)

The parabolic blending is somewhat more complicated but can be derived the same way

with the basic blending coefficient as described in equation 5 and the condition stated in

equation 6. However, the blending coefficients ael_ a and ae2_a, are different due to their

parabolic nature; a__ 2 becomes:

a_ (12)
a_-2 = 1 - 2a_ + 2a_

and a_2__ becomes:

1 - 2a_ + a_

a_2-1 = 1-2ae+2a_

Thus, the parabolic blending for face 1 to 2, is given by equation 14,

As_"_-2 = 1 - 2a_ + 2a_

and the parabolic blending from faces 3 to 4 (figure 8) is given by equation 15.

(1 an)2As,..o.
Ase,,3-4 = a, As,,._. + -

1 - 2a, + 2rr_

(13)

(14)

(15)

In either case, the resulting surfaces from the linear blending, figures 9 and 10, as well as

the surfaces from the parabolic blending, figures ll and 12 represent two unique surfaces for

specifying cell sizes for orthogonality control. For most symmetry planes this may indeed

be true because the user may only want blending between the configuration surface and the

outer flow domain. Yet for the block surfaces that depend more heavily on all four edges,

these two artificial surfaces have to be combined. This will enable the attributes of each

edge to affect the overall cell sizes used in the specification of orthogonality.

To generate a surface which has attributes of each of the four functionalized edges, the

two artificial surfaces are combined with a hyperbolic blending scheme. This scheme becomes

evident when viewing the configuration surface domain in parametric space. Consider figure
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Figure 7: Linear blending functions between opposing faces 1 &2 and 3 & 4.
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Figure 8: Parabolic blending functions between opposing faces 1 &2 and 3 & 4.

Figure 9: Artificial surface results from linearly blending face 1 to 2.
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Figure 10: Artificial surface results from linearly blending face 3 to 4.

Figure 11: Artificial surface results from parabolically blending face 1 to 2.

Figure 12: Artificial surface results from parabolically blending face 3 to 4.
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13, where the percentages of the four edge functions are to be used to calculate the overall

cell sizes. For the corners of the domain, the resulting cell sizing surface is made up of 50%

of each function that meets at the respective corner, or the two individual artificial surfaces.

In addition, the center of the domain has 50% of each artificial surface. Also notice that

at the middle of each edge, there is either a 100% or a 0% of the surface to be utilized. This

arises merely from the initial linear and/or parabolic blending of the opposing face edge

functions. For the surface that contains the actual edge function, the dominant edge, 100%

of that function is to be use on that edge. Likewise, the other surface, the non-dominant

edge function is to have no effect on the resulting hyperbolically blended surface, because it

is either a line or a result of the initial parabolic blend.

By connecting the 50% regions with straight lines in the parametric domain the hyper-

bolic structure can be seen. Equations 16 and 17 represent the blending functions for face 1

to 2 and face 3 to 4 respectively, as shown in figure 14.

Here,

1 _ #2
6_ = _]a _ - 11 (16)

1
6. = _l#2 - o? - 11 (17)

\'/max

and,

Combining these blending coefficients, and hence the initial artificial surfaces, equation 18
results.

Aa_._ = 6_As_.m_ _ + 6_As_,,Ta_4 (18)

In addition, the plot of the percentages in parametric space represent two distinct blend-

ing function surfaces, one for each opposing face pair. Thus for any parametric point on

the surface, certain percentages of each surface are used,and the combined percentages sum

to 100%. Due to the smoothness of the blending function, the effects of all four edges are

smeared throughout the resulting blended surface's domain.

By utilizing this function, the overall cell size necessary for orthogonality specification

can be calculated and is based on the defining edges of the configuration's surface domain.

The resulting blended surface as shown in figure 15 is a better description for cell size

because it now limits the maximum distance a grid point can be from the configuration

surface and is not as dependent on surface curvature as other methods used. In effect,

a multi-functional blending scheme is used to determine the cell sizes. Thus, by utilizing

the cell sizes determined by the LARCS method, the forcing functions necessary to control

orthogonality within elliptic volume grid generators are more dependent on the users best

guess. In doing so, the control of grid spacing near the wall is more related to the problem

at hand, as opposed to the rapid solution of the elliptic Poisson's equations.

286



5O%

_o

50%

5O% 100% 50%

0%

50%
0

o so_

0%

5O% 100% 5O%

50%

0
ao

50%

Figure 13: Percentages of surface functions in the parametric domain.

287



Dominant

Non-dominant

Figure 14: Hyperbolic blending function in parametric space for the dominant and non-

dominant edge cell sizing functions.
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Figure 15: Fully blended cell sizing surface based on defining edges in parametric space.
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Method Comparison

As stated in the introduction, the most common way of calculating the cell size to use

for orthogonality specification is TFI. There are two different TFI's that can be utilized.

Tile first is two dimensional in parametric space with (_, r/, As) being the three variables.

Although this seems straight forward, the effects of the edge functions are not smeared and

a smooth blending does not result (figure 16).

The second type of TFI that can be used is in three dimensional parametric space. For

this type of interpolation, it was stated earlier that if TFI is used, due to its dependency on

grid distributions, grid lines emanating from the surface may be skewed. Because of these

grid lines being skewed, the cell sizes based on the standard arc-length calculation, equation

4, will be much larger than if the grid line is orthogonal to the surface (figure 17). In turn

this produces a much larger cell size because the method is trying to stretch a grid line

between two opposing faces with different distributions which arise from trying to model the

flow field characteristics.

On the other hand, if the dependency on the grid distribution is removed and a smooth

blending function is used between the defining cell sizes on the surface's edges, smaller initial

grid spacings result (figures 16 and 17). In addition, smaller cell sizing gradients are produced

across the surface domain. This occurs simply due to the fact that the orthogonality is

assumed in the arc-length calculation. Therefore to obtain the best distribution of the cell

sizes over the surface of the configuration, the LARCS method should be the method of

choice. In doing so, the grid spacing near the surface will be smaller, lending to better and

quicker resolution of the boundary layer in the evolution of the CFD solution.

As an example of the LARCS method, two different configurations are considered. The

first configuration is the Space Shuttle (figure 18). By viewing the comparison of cell sizes

in the contoured plots, the areas of highest cell sizes are the discontinuous regions. More

specifically the wing root and fuselage juncture and the Orbital Manuevering System (OMS)

pod. This is also evident when viewing the resolved grid using both methods (figure 19). For

the TFI grid, at the first grid point from the wing root and fuselage juncture, the LARCS

method has placed 3 more grid points in the same relative distance. These extra grid points

placed by the LARCS method and the elliptic solution, shows just how much more of the

boundary layer can be resolved.

Also consider the Langley lifting body, the HL-20 (figure 20). Here the cell sizes, shown

in figure 21, are similar between the two different methods. This can be attributed to the fact

that the surface has no discontinuous regions. Yet, when considered more closely, at those

regions of high curvature gradients, such as the wing root and fuselage juncture, the surface

cell sizes do differ slightly. The sensitivity to the surface curvature is another condition that

is neglected by the LARCS method. Furthermore, due to the smooth blending of the LARCS

method, the gradients found on the fuselage forward of the wing for the three dimensional

TFI, are not apparent for the LARCS method of distribution. Thus, the cell sizes based on

the LARCS method are more likely to result in better resolution of the boundary layer, and

not cause instability in the CFD solver, due to the smooth transitions between all cell sizing

edge functions.
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Cell Size Calculation
Method Comparison
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Figure 16: Cell sizing comparison of 2D TFI and the LARCS methods.
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Cell Size Comparison
Method Comparison
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Figure 17: Cell sizing comparison of 3D TFI and the LARCS methods.
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Figure 18: Space Shuttle surface geometry.
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Cell Size Calculation
Method Comparison
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Figure 19: Cell sizing comparison of 3D TFI and LARCS for the Space Shuttle.
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Figure 20: Langley Lifting Body (HL-20).
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Figure 21: Cell sizing comparison of 3D TFI and LARCS for the HL-20.
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Summary

An alternate method for calculating cell sizes for the explicit control of orthogonality in solv-

ing Poisson's three dimensional space equations has been presented. This method inherently

builds a better link from the user's "best" guess for proper cell sizes to the specification of

the cell sizes throughout the domain of the configuration's surface. The resulting cell sizes

are much better than those generated by other methods, simply because LARCS eliminates

any dependency on grid distributions, and is only concerned with the cell sizing distributions

on the defining edges of the configuration's surface. In addition, the resulting cell sizes have

smoother distributions on the surface of the configuration, which tends to reduce CFD solver

inaccuracy, as opposed to large cell sizing gradients. Furthermore, by utilizing the LARCS

method, the number of points near the surface will tend to be higher, and the flow solvers

used will have a better chance of resolving the boundary layer. Finally, by having better

resolution of the viscous forces before the first grid adaptation, the number of successive

re-adaptations necessary to obtain a converged solution should be reduced. Thus, the user

can obtain a quicker resolution of the boundary layer and the resulting converged solution,

due to better initial grid spacing from the surface.
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